Nonpeptide Somatostatin Agonists with sst₄ Selectivity: Synthesis and **Structure-Activity Relationships of Thioureas**

Shenquan Liu,[†] Cheng Tang,[†] Bin Ho,[†] Michael Ankersen,[‡] Carsten E. Stidsen,[§] and A. Michael Crider^{*,†}

Division of Basic Pharmaceutical Sciences, School of Pharmacy, Northeast Louisiana University, Monroe, Louisiana 71209-0470, and MedChem Research and Molecular Pharmacology, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark

Received February 20, 1998

Utilizing NNC 26-9100 (11) as a structural lead, a variety of nonpeptide derivatives of somatostatin were synthesized and evaluated for sst_2 and sst_4 receptor binding affinity. A novel thiourea scaffold was utilized to attach (1) a heteroaromatic nucleus to mimic the Trp⁸ residue, (2) a nonheteroaromatic nucleus to mimic Phe^{7} , and (3) a primary amine or other basic group to mimic the Lys⁹ residue of somatostatin. Displacement studies were carried out using membranes from cell lines expressing ssts [BHK cells (sst₄) and HEK 293 cells (sst₂)] utilizing [¹²⁵I]Tyr¹¹-SRIF as the radioligand. Several thioureas (11, 38, 39, 41, and 42) and the urea **66** exhibited K_i values of less than 100 nM. The thioureas **11** ($K_i = 6$ nM) and **41** (K_i = 16 nM) and the urea **66** (K_i = 14 nM) are believed to be the most potent nonpeptide sst₄ agonists known. Since the thiourea **11** and the urea **66** exhibit high sst₄ selectivity, these novel nonpeptide derivatives may be useful tools for studying the sst_4 receptor. Studies are currently in progress to evaluate the therapeutic potential of NNC 26-9100 (11) in the treatment of glaucoma.

Introduction

Somatostatin [somatotropin release-inhibiting factor (SRIF)] is a cyclic tetradecapeptide containing one internal disulfide bond between residues 3 and 14, was isolated initially from bovine hypothalamus, and is characterized as a potent inhibitor of growth hormone (GH) secretion from the anterior pituitary.¹ SRIF-14 (1; Figure 1) and SRIF-28, a 28-amino acid form of SRIF-14 extended from the N-terminal end, display similar biological activities with a different pattern of potency depending on the tissue.² In addition to the inhibitory effects on GH release, both peptides inhibit the release of a variety of other peptides including glucagon, insulin, and gastrin,³ and they act as neurotransmitters and neuromodulators in the central nervous system and the periphery.⁴

SRIF exerts its potent inhibitory effects following binding to high-affinity SRIF receptors (ssts) that have been identified on target tissues. The existence of multiple receptor subtypes was first demonstrated by Reubi⁵ in radioligand binding studies using rat brain cortex. The recent cloning of five sst subtypes has confirmed that the effects of SRIF are mediated by a family of G protein-coupled receptors (sst_{1-5}) ,⁶ formerly designated SSTR 1-5.7 These five sst isoforms have seven hydrophobic transmembrane domains (20-30amino acid-forming helices) which are separated by stretches of hydrophilic residues. The transmembrane regions show a higher degree of homology, whereas extensive differences are seen in the amino acid sequences and the sizes of the N- and C-termini. On the

Ala ¹ -Gly ² -Cys ³ -Lys ⁴ -Asn ⁵ -Phe ⁶ -Phe ⁷ -Trp ¹⁰	N-Me-Ala-Tyr-D-Trp
	│ │
Cys ¹⁴ -Ser ¹³ -Thr ¹² -Phe ¹¹ -Thr ¹⁰ -Lys ⁹	Phe-Val-Lys
1: SRIF-14	2: MK 678

D-Phe-Cys-Phe-D-Trp	AcNH-4-NO ₂ -Phe-D-Cys-Tyr-D-Trp				
Thr-ol-Cys-Thr-Lys	NH₂-D-Tyr-Cys-Thr-Lys				
3: Octreotide	4				

Figure 1. Chemical structures of SRIF-14 (1), MK 678 (2), octreotide (3), and 4.

basis of structural and pharmacological properties, sst₂, sst₃, and sst₅ belong to the SRIF₁ receptor subclass (65-75% sequence homology). The sst_1 and sst_4 subtypes comprise the SRIF₂ subclass⁸⁻¹⁰ (71% sequence homology). The major difference between these two subclasses is that SRIF₁ receptors bind octapeptide and hexapeptide SRIF-14 analogues with high affinity, while SRIF₂ receptors bind these analogues with drastically reduced affinity.11

Due to its poor bioavailability and rapid degradation by proteases, the therapeutic utility of SRIF-14 is limited. As a result, considerable efforts have focused on the development of peptidomimetics of SRIF-14. Systematic replacement¹² of all amino acids in SRIF-14 by L-Ala revealed that Trp⁸ and Lys⁹ are essential for biological activity, whereas Phe⁷ and Thr¹⁰ can undergo minor modifications. These studies showed that SRIF-14 contains a β -turn composed of the tetrapeptide Phe7-Trp8-Lys9-Thr10. Additional work demonstrated that the first two amino acids, Ala-Gly, are

^{*} To whom correspondence should be addressed. Phone: (318) 342-1707. Fax: (318) 342-1606. E-mail: pycrider@alpha.nlu.edu.

Northeast Louisiana University

[‡] MedChem Research, Novo Nordisk A/S.

[§] Molecular Pharmacology, Novo Nordisk A/S.

Figure 3. Chemical structures of 9, 10, and NNC 26-9100 (11).

not necessary for full biological activity.¹³ Using this information and structure-activity relationship (SAR) studies on hexapeptides led to the development of the hexapeptide MK 678 (2; Figure 1).¹⁴ This peptide was 50-100 times more potent that SRIF-14 in the in vitro inhibition of GH release and in the in vivo release of insulin and glucagon. Due to bioavailability problems and side effects associated with a malfunction in absorption of fats, clinical trials with MK 678 were terminated. Additional studies¹⁵ led to the discovery of octreotide (3; Figure 1). This octapeptide is a potent SRIF₁ receptor subclass agonist that has been the subject of extensive SAR studies. Long-acting preparations of octreotide are available for use in the treatment of acromegaly, neuroendocrine tumors, and gastrointestinal disorders.¹⁶ Until recently, no full antagonist of SRIF-14 had been reported. The octapeptide 4 (Figure 1) which incorporates a D-Cys at position 2 and an 4-NO₂-L-Phe at position 1 was shown to be a full sst₂ antagonist.17

A number of nonpeptide derivatives (Figure 2) of SRIF have recently been reported.¹⁸⁻²¹ In these analogues a D-sugar or heterocyclic scaffold was utilized to mimic the β -turn of SRIF. Molecular modeling studies suggested that the substituents at C_2 , C_1 , and C_6 of the sugar may mimic the critical Phe⁷-Trp⁸-Lys⁹ side chains found in SRIF. Additionally, the benzyl group at C₄ may mimic the Phe¹¹ residue in SRIF. Compound **5** was superimposed on the solution structure of the hexapeptide L-363,301, a sst₂ agonist, and a local minimum of the sugar derivative was found to overlap quite well with the bioactive conformation of L-363,301. The nonpeptide 5 was found to be the most potent derivative in this series, with an in vitro IC₅₀ of 1.9 μ M in membranes from a subclone of the AtT-20 cell line; however, this derivative also binds to β_2 -adrenergic and NK-1 receptors.¹⁹ Several tetrasubstituted xylofuranose derivatives were synthesized by Papageorgiou et al.,²⁰ and compound 6 exhibited an IC₅₀ of 23 μ M in displacement of [125I]Tyr11-SRIF-14 from rat whole brain homogenates. Using molecular modeling, five- to sevenmembered nitrogen heterocycles were used as scaffolds to synthesize SRIF agonists. The azepine **7** was the most potent derivative with an IC₅₀ of 10 μ M in displacement of 3-[¹²⁵I]Tyr¹¹-SRIF-14 in rat brain homogenates.²¹ Using the benzodiazepine skeleton as a β -turn mimetic scaffold led to the synthesis of compound **8**. This nonpeptide analogue of SRIF exhibited an IC₅₀ of 7 μ M in displacement of [¹²⁵I]Tyr³-octreotide in rat brain homogenates.²²

Since a nonpeptide SRIF ligand may offer therapeutic advantages²³ over peptides, a screening program was initiated to identify a lead nonpeptide with affinity for sst_{1-5} receptors. The search focused on a scaffold with the following attachments: (1) a heteroaromatic nucleus to mimic the Trp^8 residue, (2) a nonheteroaromatic nucleus to mimic Phe⁷, and (3) a primary amine or other basic groups to mimic the Lys⁹ residue of SRIF-14. Using these search criteria, the thiourea 9 (Figure 3) was identified as a structural lead. The key fragments in this compound are a heteroaromatic moiety (pyridine), an aromatic group, and a basic imidazole group connected through a thiourea scaffold. This compound showed moderate affinity for sst₂ with a 20-fold selectivity of sst₄ over sst₂. The *S*-methylisothiourea **10** (Figure 3) had a slightly greater affinity for sst₂ than **9**; however, this analogue exhibited about a 100-fold sst₂/sst₄ selectivity. Evaluation of additional compounds in this series led to the discovery of the thiourea **11** (NNC 26-9100) (Figure 3). To our knowledge this was the first report of the evaluation of nonpeptides at cloned ssts. Compound **11** exhibited high affinity ($K_i = 6$ nM) for sst₄ and sst₂/sst₄ selectivity of about 100-fold. In a functional assay based on inhibition of forskolin-induced accumulation of adenosine cyclic 3',5'-monophosphate (cAMP) in BHK cells expressing human ssts, the thiourea 11, like SRIF-14, potently inhibited cAMP accumulation.24

Using in situ hybridization techniques, Mori et al.²⁵ showed that the predominant expression of sst₄ is in

Scheme 1

the posterior iris epithelium and ciliary body. Since sst₄ activation induces inhibition of cAMP accumulation in BHK cells expressing this receptor, a similar effect may also occur in the iris/ciliary body. The fact that a decrease in cAMP levels leads to reduction in aqueous humor production suggests that an sst₄ agonist would likely lower intraocular pressure. Recently, a combination of SRIF-14 (0.1 μ M) and acetylcholine (10 μ M) was shown to induce an increase in Ca²⁺ levels in the nonpigmented cells of the rabbit ciliary body by over 25-fold. The effect was attributed to the interaction of SRIF-14 with a novel sst.²⁶ Thus, selective sst₄ agonists may have potential therapeutic utility in the treatment of glaucoma.

In an effort to increase the affinity and selectivity at sst_4 receptors, an extensive SAR study of the lead compound **11** was initiated. This investigation involved the following modifications of the thiourea **11**: (1) replacement of the benzyl group by an α -naphthylmethyl group, (2) replacement of the 5-bromo substituent on the pyridine ring with a 5-nitro group or a hydrogen, (3) varying the distance between the thiourea group and the two aromatic rings, (4) replacement of the thiourea group by a urea group, (5) varying the distance between the thiourea group by a urea group and the imidazole ring, (6) incorporating the spacer group between the thiourea moiety and the imidazole ring into a heterocycle or an aromatic ring, and (7) replacement of the imidazole ring by other basic functionalities (Figure 3).

Chemistry

Thioureas are conveniently prepared by coupling an amine with an isothiocyanate under mild reaction conditions.²⁷ Reaction of the 2-bromopyridines **12** and **13** with an excess of a diaminoalkane in the presence of a catalytic amount of pyridine readily afforded the 2-(aminoalkylamino)pyridines **14–20** (Scheme 1). Alkylation of **14–20** with either a benzyl halide or α -naph-

thylmethyl bromide in dimethyl sulfoxide using sodium hydride as the base gave the *N*-(1,1-disubstituted)diamines **21–29**. The key *N*-(1,1-disubstituted)aminoalkyl isothiocyanates **30–36** were prepared by reaction of *N*-(1,1-disubstituted)diamines **21–29** with 1 equiv of DCC in the presence of carbon disulfide in tetrahydrofuran.²⁸ The 2-(aminoalkylamino)pyridines **14–20** and the *N*-(1,1-disubstituted)diamines **21–29** were generally purified by column chromatography to yield nonanalytically pure oils which were utilized in the subsequent reaction without further purification.

Reaction of the isothiocyanates **30–36** with an amine or a trityl-protected amine afforded the desired thioureas **11** and **37–64** after removal of the trityl protecting group with refluxing 1 N hydrochloric acid (Scheme 2, Tables 1–3). Most of the thioureas were isolated as solid foams which could not be crystallized; however, in most cases analytically pure samples could be obtained by column chromatography. Numerous attempts to prepare salts with a variety of organic and inorganic acids gave very hygroscopic oils or solids. The urea **66** was readily prepared²⁹ by reaction of the diamine **21** with triphosgene and 3-[1-(triphenylmethyl)-1*H*-imidazol-4-yl]propylamine²⁴ **(65)** in the presence of triethylamine followed by removal of the trityl protecting group (Scheme 2).

Pharmacology

Displacement studies were carried out using membranes from cell lines expressing ssts [BHK cells (sst₄) and HEK 293 cells (sst₂)] utilizing [^{125}I]Tyr¹¹-SRIF-14 as the radioligand.²⁴ Several of the thioureas (**11**, **38**, **39**, **41**, and **42**) and the urea **66** exhibited K_i values of less than 100 nM at sst₄ (Table 1).

With the exception of the aminopropyl (**59**) and the aminobutyl (**63** and **64**) derivatives, all thioureas and the urea **66** demonstrated greater affinity for sst₄ than for sst₂. Replacement of the 4-bromobenzyl group (**9**)

Scheme 2^a

^a (a) Amine/THF; (b) i. amine/THF, ii. refluxing 1 N HCl; (c) i. triphosgene/Et₃N/THF, ii. refluxing 1 N HCl.

Table 1. In Vitro Binding at sst₂ and sst₄ Receptors by Thioureas 11 and 37–50 and the Urea 66

^{*a*} Ar groups: 3,4-Cl₂C₆H₃ (3,4-dichlorophenyl), C₁₀H₇ (1-naphthyl), 4-BrC₆H₄ (4-bromobenzyl). ^{*b*} K_i (nM) in transfected HEK 293 cells. ^{*c*} K_i (nM) in transfected BHK cells. ^{*d*} Reference 24. ^{*e*} SMS 201-995.

by 3,4-dichlorobenzyl (11) or α -methylnaphthyl (41) groups resulted in enhanced sst₄ affinity of 7- and 20fold, respectively. Introduction of a 5-Br substituent on the pyridine ring enhances binding affinity at sst₄ by about 3-fold (compare compounds **47** and **48**). Decreasing the distance between the thiourea group and the 5-bromopyridyl moiety of **11** by one methylene group (compound **39**) led to a decrease in sst₄ affinity of 12fold. Similarly, increasing the distance (n = 4 and 5, Table 1) between the 5-bromopyridyl moiety and the thiourea group of compound **11** (compounds **42** and **43**) resulted in a decrease in sst_4 affinity by 9- and 22-fold, respectively. Replacement of the thiourea group of **39** by a urea group (compound **66**) results in a compound with essentially the same sst_4 binding affinity but dramatically decreased sst_2 affinity. The urea **66** exhibited the greatest sst_2/sst_4 selectivity of any compound evaluated in this investigation.

Compounds having the 3-(imidazol-4-yl)propyl group demonstrated the greatest sst₄ affinity (compounds **11**, **38**, **39**, **41**, **42**, and **66**). These compounds all exhibited K_i values less than 100 nM at sst₄ receptors. Replace-

Table 2. In Vitro Binding at sst₂ and sst₄ Receptors by Thioureas 54–58

53-54

		53-54		55-	58		
compd	Х	Ar^{a}	п	Y	Z	$\mathbf{sst}_2{}^b$	sst_4^c
51 52 53 54 55 56 57 58 SRIF ^d	Br Br Br Br H Br H	$\begin{array}{c} 3,4\text{-}Cl_2C_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 4\text{-}BrC_6H_3\\ 3,4\text{-}Cl_2C_6H_3\\ 4\text{-}BrC_6H_4 \end{array}$	2 3 3 3 3 4	(CH ₂) ₂ (CH ₂) ₃ NH (CH ₂) ₃ NH (CH ₂) ₃	N N C	> 300000 3000 > 300000 > 300000 74000 114000 > 300000 > 300000 0.2 0.2	1200 1000 15000 71000 1700 113 185 71000 1.4
MK 678						0.3	3200

^eSee corresponding footnotes in Table 1.

Table 3. In Vitro Binding at sst₂ and sst₄ Receptors by Thioureas 59-64

	Br	(CH Ar	2)n~	S N N (CH₂) _m -R H H		
compd	Ar ^a	n	т	R	\mathbf{sst}_2^b	sst4 ^c
59	3,4-Cl ₂ C ₆ H ₃	2	3	NH ₂	2300	4200
60	$3,4-Cl_2C_6H_3$	2	3	$N(CH_3)_2$	2000	803
61	3,4-Cl ₂ C ₆ H ₃	2	3	1-pyrrolidinyl	1700	477
62	3,4-Cl ₂ C ₆ H ₃	3	3	1-pyrrolidinyl	1600	514
63	3,4-Cl ₂ C ₆ H ₃	3	4	NH ₂	830	1000
64	$C_{10}H_{7}$	3	4	NH_2	1000	2000
$SRIF^d$					0.2	1.4
octreotide ^{d,e}					0.3	1904
MK 678 ^d					0.3	3200

^{*a*-*e*}See corresponding footnotes in Table 1.

ment of the 3-(imidazol-4-yl)propyl group by a 2-(imidazol-4-yl)ethyl group led to decreased sst₄ affinity by 2-7-fold (compare compounds 37, 39 and 38-42). Introduction of conformational constraints between the thiourea group and the imidazole ring, using either a heterocyclic system (compare compounds 39 and 50) or a phenyl ring (compare compounds 38 and 49), decreased sst₄ affinity by 6- and 10-fold, respectively.

Thioureas with high (11 and 41), moderate (57), and low (37, 50, and 61) sst₄ binding affinity were evaluated in a functional assay to assess inhibition of forskolininduced adenosine cyclic 3',5'-monophosphate (cAMP) in BHK cells expressing the human sst₄ receptor (Table 4 and Figure 4). The thioureas with the highest affinity for sst₄ receptors (compounds **11** and **41**) potently inhibited forskolin-induced cAMP accumulation with

Table 4. Inhibition by Selected Thioureas of Forskolin-Induced cAMP Accumulation in BHK Cells Expressing the Human sst₄ Receptor

inhibition of cAMP accumulation			
compd	$EC_{50} (nM)^{a}$		
11	26 ± 6		
37	2350 ± 30		
41	24 ± 16		
50	990 ± 340		
57	154 ± 46		
61	4000 ± 145		

^{*a*} EC₅₀, mean \pm SEM; n = 3 or 4.

Figure 4. Inhibition by thiourea derivatives of forskolininduced cyclic AMP accumulation in BHK cells expressing the human sst₄ receptor subtype. The data are from representative experiments performed in triplicate for compound 11 (+), compound $37(\blacklozenge)$, compound $41(\blacksquare)$, and compound $57(\times)$.

EC₅₀ values of 26 and 24 nM, respectively. These data demonstrate that the thioureas act as full agonists at the human sst₄ receptor.

Conclusions

The amino acid sequence Phe⁷-Trp⁸-Lys⁹-Thr¹⁰ is thought to comprise the β -turn of SRIF, and these residues appear to play an important role in the binding at ssts.³⁰ Additionally, the proximity of the Trp⁸-Lys⁹ residues is considered essential for sst binding. Based on the results of the in vitro binding studies of the target thioureas at ssts, several conclusions can be made. The pyridine ring may mimic the Trp⁸ of SRIF, and the nonheteroaromatic benzyl or naphthyl groups may mimic Phe⁷ in the natural peptide. Although less basic that the ϵ -NH₂ group of Lys, the imidazoyl group, found in the most potent thioureas, may mimic the Lys9 residue of SRIF. Hirschmann et al.¹⁹ have shown that the Phe⁸ of SRIF can be replaced by a His residue. This leads to the speculation that the imidazoyl group of the thiourea derivatives could mimic the Phe⁷ of SRIF. The role of the thiourea moiety is uncertain. Perhaps, this group serves as a scaffold to properly orient the heteroaromatic, aromatic, and basic groups at ssts. The thioureas **11** ($K_i = 6$ nM) and **41** ($K_i = 16$ nM) and the urea **66** ($K_i = 14$ nM) are, to our knowledge, the most potent nonpeptide sst₄ agonists known. Since the thiourea 11 and the urea 66 exhibit high selectivity for sst₄ over sst₂, these compounds may be useful tools for studying the pharmacological effects of the sst₄ receptor. Selective sst₄ agonists may lead to a decrease of aqueous humor production in the iris/ciliary body.²⁵ This opens the possibility that these nonpeptide sst₄ agonists may represent novel therapeutic agents for the treatment of glaucoma. Studies are currently in progress to evaluate the potential utility of NNC 26-9100 (11) in this disorder.

Experimental Section

Chemistry. Melting points were determined on a Thomas-Hoover melting point apparatus and are not corrected. The IR spectra were recorded as liquid films or as potassium bromide pellets on a Nicolet Impact 400D spectrometer. The NMR spectra were recorded on a JEOL FX 90Q 90-MHz spectrometer or a JEOL Eclipse 400-MHz spectrometer, and chemical shifts are recorded in parts per million (δ) relative to tetramethylsilane. Analytical data were obtained from Oneida Research Services, Inc., Whitesboro, NY, and Desert Analytics, Tucson, AZ. Precoated plastic TLC (5- \times 20-cm) 0.2-mm aluminum oxide M/UV_{254} and silica gel 0.25-mm with fluorescent indicator UV₂₅₄ plates were purchased from the Brinkmann Instrument Co. or EM Industries, Inc. Flash chromatography was performed on Ace glass columns (i.d. = 5 cm, length = 45 cm) with 150–200 g of silica gel (40 μ m) purchased from the J. R. Baker Chemical Co. All solvents which were used for recrystallizations and column chromatography were of analytical grade, and 2-(2-aminoethylamino)-5-nitropyridine (15) was obtained from the Aldrich Chemical Co.

Representative Procedure for the Synthesis of 2-(Aminoalkylamino)pyridines. Preparation of *N*-1-(5-Bromopyrid-2-yl)ethane-1,2-diamine (14). A mixture of 2,5-dibromopyridine (13; 10.0 g, 42.2 mmol) and pyridine (4.24 g, 53.6 mmol) in 1,2-diaminoethane (43 mL) was refluxed under nitrogen for 18 h. The reaction mixture was evaporated under reduced pressure and cooled, and the resulting residue was treated with THF (150 mL) to yield a white precipitate. The precipitate was filtered and washed with additional THF (100 mL). Evaporation of the filtrate afforded a brown oil which was vacuum distilled to give 6.48 g (71%) of 14 as a light-yellow oil: bp 134–142 °C (0.6 mmHg); ¹H NMR (CDCl₃) δ 1.33 (s, 2 H, NH₂), 2.92 (t, 2 H), 3.29 (m, 2 H), 5.22 (br s, 1 H,

NH), 6.31 (d, J = 9 Hz, 1 H, pyridine H-3), 7.44 (dd, J = 2.7 Hz, J = 9 Hz, 1 H, pyridine H-4), 8.09 (d, J = 2.5 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 41.22, 44.74, 106.72, 108.67, 139.55, 148.54, 148.70.

N-1-(Pyrid-2-yl)propane-1,3-diamine (16). 2-Bromopyridine (**12**; 20.0 g, 126.7 mmol), pyridine (12.7 g, 160.8 mmol), and 1,3-diaminopropane (47.4 g, 639 mmol) afforded a darkbrown oil. Vacuum distillation gave 9.19 g (48%) of **16** as a light-yellow oil: bp 111–114 °C (0.65 mmHg); ¹H NMR (CDCl₃) δ 1.28 (br s, 2 H, NH₂), 1.75 (m, 2 H), 2.84 (t, 2 H), 3.35 (m, 2 H), 5.00 (br s, 2 H, NH), 6.50 (m, 2 H), 7.40 (ddd, 1 H), 8.07 (m, 1 H); ¹³C NMR (CDCl₃) δ 32.93, 39.92 (2×), 106.77, 112.30, 137.17, 148.00, 159.00.

N-1-(5-Bromopyrid-2-yl)propane-1,3-diamine (17). 2,5-Dibromopyridine (13; 4.40 g, 18.6 mmol), pyridine (1.86 g, 23.6 mmol), and 1,3-diaminopropane (25 mL) yielded an oil. Vacuum distillation afforded 2.69 g (63%) of 17 as an oil: bp 135–139 °C (0.1 mmHg); ¹H NMR (CDCl₃) δ 1.52 (br s, 2 H, NH₂), 1.72 (m, 2 H), 2.89 (t, 2 H), 3.36 (m, 2 H), 5.30 (br s, 1 H, NH), 6.29 (d, J = 9 Hz, 1 H, pyridine H-3), 7.44 (dd, J = 2.4 Hz, J = 9 Hz, 1 H, pyridine H-4), 8.09 (d, J = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 32.61, 39.98, 40.25, 106.45, 108.29, 139.50, 148.49, 157.48.

N-1-(Pyrid-2-yl)butane-1,4-diamine (18). 2-Bromopyridine (12; 20.0 g, 126.7 mmol), pyridine (12.7 g, 160.8 mmol), and 1,4-diaminobutane (56.3 g, 639 mmol) gave 11.5 g (55%) of 18 as a light-yellow oil: bp 103–105 °C (0.05 mmHg) [lit.³² bp 136–138 °C (2 mmHg)]; ¹H NMR (CDCl₃) δ 1.56 (br s, 2 H, NH₂), 1.61 (m, 4 H), 2.73 (t, 2 H), 3.25 (m, 2 H), 4.73 (br s, 1 H, NH), 6.43 (m, 2 H), 7.40 (ddd, 1 H), 8.08 (m, 1 H); ¹³C NMR δ 27.03, 31.25, 41.98, 42.09, 106.56, 112.57, 137.27, 148.22, 159.00.

N-1-(5-Bromopyrid-2-yl)butane-1,4-diamine (19). 13 (10.0 g, 42.2 mmol), 1,4-diaminobutane (52.6 g, 597 mmol), and pyridine (10.0 g, 42.2 mmol) gave a brown oil. Vacuum distillation afforded 7.87 g (76%) of **19** as a colorless oil: bp 165–170 °C (0.8 mmHg); ¹H NMR (CDCl₃) δ 1.15–1.75 (m, 6 H), 2.72 (t, 2 H), 3.25 (br s, 2 H, NH₂), 4.75 (br s, 1 H, NH), 6.30 (d, J = 9 Hz, pyridine H-3), 7.47 (dd, J = 2.7 Hz, J = 9 Hz, 1 H, pyridine H-4), 8.10 (d, J = 2.4 Hz, pyridine H-6); ¹³C NMR (CDCl₃) δ 26.87, 31.09, 41.87, 42.20, 108.07, 139.66, 148.71.

N-1-(5-Bromopyrid-2-yl)pentane-1,5-diamine (20). 13 (8.42 g, 35.5 mmol), pyridine (3.54 g, 44.8 mmol), and 1,5diaminopentane (25.0 g, 244.7 mmol) gave an oil. Flash chromatography on silica gel using CH₂Cl₂/MeOH/concentrated NH₄OH (50:50:1) as the solvent afforded 5.50 g (60%) of **20** as an oil: ¹H NMR (CDCl₃) δ 1.50 (m, 6 H), 1.85 (br s, 2 H, NH₂), 2.72 (m, 2 H), 3.25 (m, 4 H), 4.70 (br s, 1 H, NH), 6.30 (d, *J* = 9 Hz, 1 H, pyridine H-3), 7.47 (dd, 1 H, H-4), 8.09 (d, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 24.38, 29.40, 33.75, 41.88, 42.50, 106.88, 107.19, 140.00, 149.06, 157.50.

Representative Procedure for the Alkylation of 2-(Aminoalkylamino)pyridines Using Sodium Hydride in Dimethyl Sulfoxide. Preparation of N-1-(5-Bromopyrid-2yl)-1-(3,4-dichlorobenzyl)ethane-1,2-diamine (21). A 60% mineral oil dispersion of NaH (0.584 g, 14.6 mmol) and 14 (3.00 g, 13.9 mmol) in DMSO (30 mL) was stirred for 2 h under nitrogen. The suspension was cooled to 0-5 °C and treated dropwise with 3,4-dichlorobenzyl chloride (2.71 g, 13.9 mmol) in DMSO (15 mL). After stirring overnight at room temperature, the reaction mixture was poured into 200 mL of an icewater mixture. The mixture was extracted with ethyl acetate $(3 \times 75 \text{ mL})$, and the combined ethyl acetate extracts were washed with water (2×50 mL), dried (Na₂SO₄), filtered, and evaporated to yield an oil. Flash chromatography on silica gel using CH₂Cl₂/MeOH/Et₃N (90:5:5) as the solvent system gave 3.5 g (67%) of **21** as a yellow oil: ¹H NMR (CDCl₃) δ 1.45 (s, 2 H, NH₂), 2.92 (t, 2 H, NCH₂), 3.57 (m, 2 H, CH₂), 4.72 (s, 2 H, ArCH₂), 6.39 (d, *J* = 9 Hz, 1 H, pyridine H-3), 7.32 (m, 4 H, ArH), 8.16 (d, J = 2 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 39.82, 51.47, 51.95, 107.00, 107.27, 126.23, 128.77, 130.62, 131.04, 132.73, 138.85, 139.77, 148.66, 156.62.

N-1-(5-Nitropyrid-2-yl)-1-(3,4-dichlorobenzyl)ethane-1,2-diamine (22). 15 (3.00 g, 16.5 mmol), NaH (0.692 g, 17.3 mmol), and 3,4-dichlorobenzyl chloride (3.22 g, 16.5 mmol) in DMSO (25 mL) gave an oil. Flash chromatography on silica gel using EtOAc/MeOH/concentrated NH₄OH (60:40:1) as the solvent yielded 2.84 g (51%) of 22 as an oil: ¹H NMR (CDCl₃) δ 1.35 (br s, 2 H, NH₂), 3.68 (t, 2 H), 4.88 (s, 2 H), 6.55 (d, *J* = 9.6 Hz, 1 H, pyridine H-3), 7.30 (m, 3 H), 8.23 (dd, *J* = 2.7 Hz, *J* = 9.3 Hz, 1 H, pyridine H-4), 9.08 (d, 2.9 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 39.82, 51.47, 52.12, 104.61, 126.23, 130.83, 137.33, 146.49.

N-[1-(5-Bromopyrid-2-yl)-1-(naphth-1-yl)methyl]propane-1,3-diamine (25). 17 (8.71 g, 37.9 mmol), a 60% mineral oil dispersion of NaH (1.67 g, 41.6 mmol), and 1-(bromomethyl)naphthalene³³ (9.21 g, 41.6 mmol) in DMSO (60 mL) gave an oil. Flash chromatography on silica gel using CH₂Cl₂/MeOH/concentrated NH₄OH (50:50:1) afforded 5.10 g (35%) of **25** as an oil: ¹H NMR (CDCl₃) δ 1.43 (br s, 2 H, NH₂), 1.75 (m, 2 H), 3.67 (t, 2 H), 5.12 (s, 2 H, ArCH₂), 6.31 (d, J = 9 Hz, 1 H, pyridine H-3), 7.15–8.05 (m, 8 H, ArH), 8.20 (d, J = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 31.31, 39.55, 45.72, 106.29, 107.54, 122.76, 123.84, 125.47, 125.85, 126.23, 127.74, 128.94,131.32, 132.24, 133.92, 139.55, 148.55, 156.94.

N-1-(4-Bromobenzyl)-1-(pyrid-2-yl)butane-1,4-diamine (26). 18 (10.1 g, 30.3 mmol), a 60% mineral oil dispersion of NaH (1.27 g, 31.8 mmol), and 4-bromobenzyl bromide (7.57 g, 30.3 mmol) in DMSO (60 mL) gave an oil. Flash chromatography on silica gel using CH₂Cl₂/MeOH/Et₃N (90:5:5) yielded 4.29 g (57%) of **26** as a thick oil: ¹H NMR (CDCl₃) δ 1.45 (m, 4 H, CH₂ and NH₂), 2.65 (t, 2 H), 3.45 (t, 2 H), 4.70 (s, 2 H, ArCH₂), 6.95 (m, 2 H), 7.25 (m, 5 H), 8.15 (m, 1 H); ¹³C NMR (CDCl₃) δ 24.66, 31.05, 41.94, 48.39, 50.99, 105.65, 111.88, 113.01, 120.49, 128.67, 130.73, 137.23, 148.07, 157.93.

N-1-(3,4-Dichlorobenzyl)-1-(pyrid-2-yl)butane-1,4-diamine (27). **18** (2.41 g, 14.6 mmol), a 60% mineral oil dispersion of NaH (613 mg, 15.3 mmol), and 3,4-dichlorobenzyl bromide (3.50 g, 14.6 mmol) gave an oil. Purification by flash chromatography on silica gel using a solvent system of CH₂-Cl₂/MeOH/concentrated NH₄OH (50:50:1) afforded 0.95 g (20%) of a light-green oil: ¹H NMR (CDCl₃) δ 1.52 (m, 4 H), 2.02 (br s, 2 H, NH₂), 2.70 (t, 2 H), 3.43 (t, 2 H), 4.71 (s, 2 H, ArCH₂), 6.50 (m, 2 H), 7.00–7.52 (m, 4 H), 8.16 (m, 1 H).

N-1-(5-Bromopyrid-2-yl)-1-(3,4-dichlorobenzyl)butane-1,4-diamine (28). 19 (7.00 g, 28.7 mmol), a 60% mineral oil dispersion of NaH (1.20 g, 30.1 mmol), and 3,4-dichlorobenzyl chloride (5.62 g, 28.7 mmol) in DMSO (75 mL) gave an oil. Flash chromatography on silica gel using a solvent system of $CH_2Cl_2/MeOH/concentrated NH_4OH$ (50:50:1) yielded 2.32 g (20%) of **28** as an oil: ¹H NMR (CDCl₃) δ 1.50 (m, 4 H, CH₂ and NH₂), 2.72 (t, 2 H), 3.45 (t, 2 H, NCH₂), 4.68 (s, 2 H, ArCH₂), 6.35 (d, J = 9 Hz, pyridine H-3), 7.00–7.55 (m, 4 H, ArH), 8.15 (d, J = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 24.48, 30.93, 41.87, 48.81, 59.76, 106.61, 107.10, 126.28, 128.77, 130.45, 139.12, 148.60, 156.29. Anal. (C₁₆H₁₈BrCl₂N₃) C, H, N.

N-1-(5-Bromopyrid-2-yl)-1-(3,4-dichlorobenzyl)pentane-1,5-diamine (29). 20 (5.50 g, 21.3 mmol), a 60% mineral oil dispersion of NaH (940 mg, 23.4 mmol), and 3,4-dichlorobenzyl chloride (4.60 g, 23.4 mmol) in DMSO (75 mL) afforded an oil. Purification by flash chromatography on silica gel using CH₂-Cl₂/MeOH/concentrated NH₄OH (50:50:1) as the solvent gave 1.46 g (16%) of **29** as an oil: ¹H NMR (CDCl₃) δ 1.35 (m, 6 H), 2.70 (m, 2 H), 3.40 (t, 2 H), 4.68 (s, 2 H, ArCH₂), 6.35 (d, *J* = 9 Hz, 1 H, pyridine H-3), 7.35 (m, 4 H, ArH), 8.15 (d, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 24.38, 27.19, 33.75, 42.20, 49.06, 50.63, 106.25, 107.50, 126.25, 127.81, 130.94, 131.25, 131.90, 140.00, 149.06, 156.56.

General Method for the Synthesis of 2-Pyridyl Isothiocyanates. Preparation of 2-[*N*-(5-Bromopyrid-2-yl)-*N*-(3,4-dichlorobenzyl)amino]ethyl Isothiocyanate (30). A mixture of DCC (2.74 g, 13.2 mmol) and CS₂ (10.1 g, 132.6 mmol) in THF (30 mL) was cooled to -10 °C in an ice–salt bath and treated dropwise with a solution of 21 (5.00 g, 13.2 mmol) in THF (20 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight under nitrogen. Removal of the solvent under reduced pressure afforded a white solid. The solid was triturated with diethyl ether (200 mL), and the dicyclohexylthiourea was removed by filtration. The filtrate was evaporated, and acetonitrile (100 mL) was added to the resulting residue. The remaining dicyclohexylthiourea was filtered, and the filtrate was evaporated under vacuum to afford an oil. Flash chromatography on silica gel using CH₂Cl₂/hexane/Et₃N (50:50:1) gave 4.31 g (78%) of a white solid. Recrystallization from Et_2O /hexane gave an analytical sample: mp 83–85 °C; ¹H NMR (CDCl₃) δ 3.84 (m, 4 H), 4.69 (s, 2 H, ArCH₂), 6.33 (d, J = 8.3 Hz, 1 H, pyridine H-3), 7.40 (m, 4 H), 8.20 (d, *J* = 2 Hz, 1 H, pyridine \tilde{H} -6); ¹³C NMR (CDCl₃) δ 43.34, 49.19, 52.71, 107.70, 108.19, 125.74, 128.34, 130.83, 140.10, 148.71, 155.65. Anal. (C15H12-BrCl₂N₃S) C, H, N.

2-[*N*-(3,4-Dichlorobenzyl)-*N*-(5-nitropyrid-2-yl)amino-]ethyl Isothiocyanate (31). **22** (2.80 g, 8.21 mmol), CS₂ (6.70 g, 88.0 mmol), and DCC (1.70 g, 8.21 mmol) in THF (60 mL) gave a dark-yellow solid. Flash chromatography on silica gel using CH₂Cl₂/hexane/Et₃N (50:50:1) as the solvent system gave 2.20 g (71%) of a yellow solid: mp 104–106 °C; ¹H NMR (CDCl₃) δ 3.94 (m, 4 H), 4.85 (s, 2 H, ArCH₂), 6.49 (d, *J* = 10 Hz, 1 H, pyridine H-3), 7.29 (m, 3 H, ArH), 8.23 (dd, *J* = 2.7 Hz, *J* = 9.3 Hz, 1 H, pyridine H-4), 9.08 (d, *J* = 2 Hz, 1 H, pyridine H-6).

3-[*N*-(**4-Bromobenzyl**)-*N*-(**pyrid-2-yl**)**amino**]**propyl Isothiocyanate (32). 23**²⁴ (2.00 g, 6.24 mmol), CS₂ (5.08 g, 66.7 mmol), and DCC (1.29 g, 6.24 mmol) in THF (45 mL) yielded an oil. Flash chromatography on silica gel using hexane/ EtOAc/Et₃N (70:30:1) as the solvent gave 1.35 g (60%) of **32** as an oil: ¹H NMR (CDCl₃) δ 2.04 (m, 4 H), 3.55 (m, 2 H), 4.67 (s, 2 H, ArCH₂), 6.50 (m, 2 H), 7.25 (m, 5 H), 8.15 (m, 1 H); ¹³C NMR (CDCl₃) δ 28.28, 43.01, 45.72, 51.68, 105.86, 112.57, 120.86, 128.61, 131.75, 137.49, 148.11, 157.81.

3-[*N*-(**5-Bromopyrid-2-yl**)-*N*-(**3,4-dichlorobenzyl**)**amino**]**propyl Isothiocyanate (33). 24** (3.64 g, 9.35 mmol), CS₂ (7.62 g, 100 mmol), and DCC (1.94 g, 9.35 mmol) in THF (45 mL) gave an oil. Purification by flash chromatography on silica gel using hexane/EtOAc/Et₃N (70:30:1) as the solvent afforded 3.19 g (79%) of **33** as an oil: ¹H NMR (CDCl₃) δ 2.06 (m, 2 H), 3.62 (m, 4 H), 4.66 (s, 2 H, ArCH₂), 6.40 (m, 1 H), 7.35 (m, 4 H), 8.22 (m, 1 H); ¹³C NMR (CDCl₃) δ 28.06, 42.91, 46.10, 51.41, 107.21, 107.43, 126.17, 128.72, 130.72, 131.26, 138.31, 139.93, 148.76, 156.13; MS (CI, CH₄) 432 M⁺. Anal. (C₁₆H₁₄BrClN₃S) C, H, N.

3-[*N*-(**5-Bromopyrid-2-yl**)-*N*-(**naphth-1-ylmethyl**)**amino**]**propyl Isothiocyanate (34). 25** (4.00 g, 10.8 mmol), CS₂ (8.80 g, 115 mmol), and DCC (2.32 g, 10.8 mmol) in THF (140 mL) afforded an oil. Flash chromatography on silica gel using a solvent system of CH₂Cl₂/hexane/Et₃N (50:50:1) gave 2.70 g (84%) of **34** as a colorless oil: ¹H NMR (CDCl₃) δ 2.00 (m, 2 H), 3.54 (t, 2 H), 3.74 (t, 2 H), 5.11 (s, 2 H, ArCH₂), 6.30 (d, *J* = 9 Hz, 1 H, pyridine H-3), 7.15-8.02 (m, 8 H, ArH), 8.25 (d, *J* = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 28.28, 43.01, 45.77, 50.32, 106.99, 107.59, 122.65, 123.89, 125.41, 125.90, 126.39, 128.93, 139.71, 148.60, 156.62. Anal. (C₂₀H₁₈-BrN₃S) C, H, N.

4-[*N*-(**5-Bromopyrid-2-yl**)-*N*-(**3,4-dichlorobenzyl**)**amino]butyl Isothiocyanate (35). 28** (1.68 g, 4.16 mmol), CS_2 (1.85 g, 44.2 mmol), and DCC (858 mg, 4.16 mmol) in THF (45 mL) afforded an oil. Purification by flash chromatography on silica gel using a solvent system of hexane/EtOAc/Et₃N (80: 20:1) gave 1.53 g (83%) of **35** as an oil: ¹H NMR (CDCl₃) δ 1.72 (m, 4 H), 3.54 (m, 4 H), 4.65 (s, 2 H, ArCH₂), 6.32 (d, J =9 Hz, 1 H, pyridine H-3), 6.97–7.50 (m, 4 H), 8.16 (d, J = 2.4Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 24.32, 27.36, 44.80, 47.90, 51.62, 107.10, 126.18, 128.66, 130.56, 130.99, 132.67, 138.63, 139.71, 148.60, 156.18. Anal. (C₁₇H₁₆BrCl₂N₃S) H, N; C: calcd, 45.86; found, 46.50.

5-[*N*-(5-Bromopyrid-2-yl)-*N*-(3,4-dichlorobenzyl)amino]pentyl Isothiocyanate (36). 29 (1.46 g, 3.50 mmol), CS₂ (2.84 g, 37.3 mmol), and DCC (722 mg, 3.50 mmol) in THF (45 mL) gave an oil. Flash chromatography using hexane/ EtOAc/Et₃N (80:20:1) afforded 1.38 g (86%) of **36** as an oil: ¹H NMR (CDCl₃) δ 1.60 (m, 6 H), 3.47 (m, 4 H), 4.69 (s, 2 H, ArCH₂), 6.35 (d, J = 9 Hz, 1 H, pyridine H-3), 7.33 (m, 4 H), 8.17 (d, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 23.99, 26.44, 29.63, 44.86, 48.65, 50.92, 106.72, 107.05, 126.33, 128.72, 130.51, 132.62, 138.90, 139.66, 148.60, 156.24.

3-[2-(1H-Imidazol-4-yl)ethyl]-1-[2-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]ethyl]thiourea (37). A suspension of histamine (320 mg, 2.88 mmol) in THF (40 mL) was treated with a solution of 30 (1.20 g, 2.88 mmol) in THF (15 mL). The reaction mixture was stirred for 48 h under a nitrogen atmosphere, and the solvent was removed under reduced pressure to afford a foam. Flash chromatography on silica gel using a solvent system of EtOAc/MeOH/concentrated NH₄OH (90:5:5) gave 987 mg (67%) of a white foam: mp 72-78 °C; ¹H NMR (CDCl₃) & 2.85 (m, 2 H), 3.68 (m, 6 H), 4.59 (s, 2 H, ArCH₂), 6.40 (d, 1 H, pyridine H-3), 6.80-7.50 (m, 9 H, NHC=SNH and ArH), 8.02 (d, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) & 27.66, 42.81, 47.74, 51.80, 107.49, 108.19, 116.16, 125.96, 130.84, 131.33, 132.95, 134.90, 135.55, 137.82, 140.32, 148.12, 156.63, 181.71. Anal. H, N; C: calcd, 45.46; found, 44.90.

3-[2-(1H-Imidazol-4-yl)ethyl]-1-[4-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]butyl]thiourea (38). A suspension of histamine (352 mg, 3.17 mmol) in THF (10 mL) was cooled to 0-5 °C and treated dropwise with **35** (1.41 g, 3.17 mmol) in THF (20 mL). After stirring overnight, the solvent was removed under reduced pressure to yield an oil which was purified by flash chromatography using a solvent system of EtOAc/MeOH/concentrated NH₄OH (85:15:1). Fractions homogeneous by TLC were combined and evaporated under reduced pressure to afford 1.59 g (90%) of a white foam: ¹H NMR (CDCl₃) δ 1.60 (m, 4 H), 2.80 (m, 2 H), 3.60 (m, 8 H), 4.63 (s, 2 H, ArCH2), 6.37 (s, 1 H), 6.79-7.55 (m, 7 H), 8.16 (d, J = 2.2 Hz, 1 H); ¹³C NMR (CDCl₃) δ 24.65, 26.27, 26.65, 43.94, 44.21, 48.49, 50.87, 106.72, 107.37, 115.34, 126.17, 128.61, 130.56, 130.94, 132.62, 134.68, 139.82, 148.44, 156.29, 181.59. Anal. (C24H25BrCl2N6S) C, H, N.

3-[3-(1H-Imidazol-4-yl)propyl]-1-[2-[N-(5-bromopyrid-2-yl)-N-(3,4-dichlorobenzyl)amino]ethyl]thiourea (39). A suspension of 3-[1-(triphenylmethyl)imidazol-4-yl]propylamine (65; 0.87 g, 2.64 mmol) in THF (40 mL) was stirred under a nitrogen atmosphere at 0-5 °C and treated dropwise with a solution of 30 (1.10 g, 2.64 mmol) in THF (15 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight. TLC on silica gel using EtOAc/ MeOH /Et₃N (90:5:5) indicated that considerable starting material remained. The reaction mixture was stirred for an additional 24 h, and the solvent was removed under reduced pressure to yield a white foam. Flash chromatography on silica gel using EtOAc/MeOH/Et₃N (90:5:5) as the solvent afforded 1.72 g (87%) of the trityl-protected thiourea as a colorless oil. The oil was suspended in 2 N HCl (40 mL) and was refluxed for 8 h under nitrogen. The precipitated triphenylmethanol was filtered, and the filtrate was evaporated under reduced pressure to yield a foam. The foam was suspended in 1 N NaOH (60 mL) and extracted with EtOAc $(3 \times 75 \text{ mL})$. The combined EtOAc extracts were washed with water (2 \times 50 mL), dried (Na₂SO₄), filtered, and evaporated to yield upon trituration with hexane 765 mg (57%) of a white hygroscopic foam: ¹H NMR (CDCl₃) δ 1.90 (m, 2 H), 2.64 (m, 6 H), 3.55 (m, 6 H), 4.62 (s, 2 H, ArCH₂), 6.44 (d, J = 9 Hz, 1 H, pyridine H-3), 7.20-7.55 (m, 8 H, NHC=SNH and ArH), 8.09 (d, J = 2.5 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 23.49, 28.87, 42.42, 43.50, 47.84, 51.79, 107.51, 108.19, 115.99, 126.01, 128.50, 130.78, 131.31, 132.89, 134.35, 137.22, 137.98, 140.26, 148.04, 156.62, 181.75. Anal. (C21H23BrClN6S) C: calcd, 46.50; found, 45.13. H: calcd, 4.28; found, 5.00. N: calcd, 15.50; found, 16.22.

3-[3-(1*H***-Imidazol-4-yl)propy]]-1-[2-[***N***-(5-nitropyrid-2-yl)-***N***-(3,4-dichlorobenzyl)amino]ethyl]thiourea (40). A suspension of 65** (959 mg, 2.61 mmol) in THF (20 mL) was cooled to 0–5 °C in an ice–water bath and treated dropwise with **31** (1.00 g, 2.61 mmol) in THF (40 mL). After stirring

overnight at room temperature under a nitrogen atmosphere, the solvent was removed under reduced pressure to yield 2.1 g of a yellow foam. The intermediate trityl-protected thiourea was suspended in 1 N HCl (35 mL) and refluxed for 1.5 h. The solution was filtered, extracted with diethyl ether (2 \times 200 mL), basified with 6 N NaOH, and extracted with EtOAc $(3 \times 100 \text{ mL})$. The combined EtOAc extracts were washed with water (3 \times 100 mL), dried (Na₂SO₄), and evaporated under vacuum to yield a foam. Flash chromatography on silica gel using a solvent system of CH2Cl2/MeOH/concentrated NH4-OH (90:10:1) yielded 500 mg (38%) of 40 as a yellow foam: $^1\!H$ NMR (DMSO- d_6) δ 1.72 (m, 2 H), 3.50 (m, 8 H), 4.93 (s, 2 H, ArCH₂), 6.75 (s, 1 H), 7.35 (m, 7 H), 8.22 (dd, 1 H, pyridine H-4), 8.97 (d, J = 2.7 Hz, pyridine H-6); ¹³C NMR (\dot{CDCl}_3) δ 23.14, 28.99, 42.05, 42.40, 48.01, 51.58, 105.27, 126.45, 128.89, 130.89, 133.17, 133.98, 146.28, 160.58, 181.46. Anal. (C₂₁H₂₃-Cl₂N₇O₂S) C, H; N: calcd, 19.29; found, 18.86.

3-[3-(1H-Imidazol-4-yl)propyl]-1-[3-[N-(5-bromopyrid-2-yl)-N-(naphth-1-ylmethyl)amino|propyl]thiourea (41). A solution of 65 (1.24 g, 3.38 mmol) was dissolved in THF (20 mL) and treated dropwise with a solution of 34 (1.40 g, 3.38 mmol) in THF (20 mL) at 0-5 °C under a nitrogen atmosphere. The reaction mixture was allowed to warm to room temperature and was stirred overnight. The solvent was evaporated under reduced pressure to yield an oil which was purified by flash chromatography on silica gel using a solvent system of EtOAc/MeOH/Et₃N (92:4:4). Fractions homogeneous on TLC were combined and evaporated to give 2.63 g of the tritylprotected thiourea. The oil was suspended in 1 N HCl (60 mL) and refluxed for 1.5 h. The precipitate was filtered, and the filtrate was extracted with Et₂O (2×100 mL). The aqueous layer was basified with 6 N NaOH and extracted with EtOAc (3 \times 100 mL). The combined EtOAc extracts were washed with water (2 \times 50 mL), dried (Na₂SO₄), filtered, and evaporated to yield an oil. Flash chromatography on silica gel using an eluent of CH2Cl2/MeOH/concentrated NH4OH (90:10:1) afforded 1.10 g (61%) of 41 as a foam: ¹H NMR (CDCl₃) δ 1.88 (m, 4 H), 2.65 (m, 2 H), 3.30-3.80 (m, 6 H), 5.02 (s, 2 H, ArCH₂), 6.18-8.11 (m, 14 H); ¹³C NMR (CDCl₃) δ 24.06, 27.19, 29.38, 42.20, 43.75, 50.94, 108.44, 115.63, 122.50, 123.44, 125.31, 125.94, 126.56, 128.13, 129.38, 131.56, 134.75, 135.00, 138.75, 140.63, 148.44, 157.81, 181.56. Anal. (C26H29BrN6S) C, H, N.

3-[3-(1H-Imidazol-4-yl)propyl]-1-[4-[N-(5-bromopyrid-2-yl)-N-(3,4-dichlorobenzyl)amino]butyl]thiourea (42). A suspension of 65 (0.50 g, 1.51 mmol) in THF (20 mL) was treated dropwise with a solution of 35 (0.67 g, 1.51 mmol) in THF (10 mL) under a nitrogen atmosphere. After stirring overnight at room temperature, the solvent was removed under reduced pressure to afford an oil. Flash chromatography on silica gel using CH₂Cl₂/MeOH/Et₃N (100:2.5:2.5) afforded 0.62 g (71%) of a colorless oil. The oil was suspended in a mixture of 2 N HCl (50 mL) and EtOH (10 mL) and refluxed for 10 h. The precipitated triphenylmethanol was filtered, and the filtrate was evaporated. The residue was suspended in 2 N NaOH (40 mL), and the aqueous phase was extracted with CH_2Cl_2 (3 \times 50 mL). The combined CH_2Cl_2 extracts were washed with water (3 \times 50 mL), dried (Na₂SO₄), filtered, and evaporated to give 107 mg (18%) of a hygroscopic solid: mp 63-67 °C; ¹H ŇMR (CDCl₃) δ 1.50-2.00 (m, 6 H), 2.60 (m, 2 H), 3.45 (br m, 6 H), 4.63 (s, 2 H, ArCH₂), 5.95-7.50 (m, 9 H), 8.13 (d, J = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 23.51, 24.65, 28.88, 43.39, 44.37, 48.59, 50.87, 106.72, 107.37, 115.12, 126.23, 128.66, 130.56, 130.89, 132.62, 134.14, 138.20, 148.49, 156.29, 181.65. Anal. $(C_{23}H_{27}BrCl_2N_6S)$ N; C: calcd, 48.43; found, 46.41. H: calcd, 4.78; found, 4.33.

3-[3-(1*H***-Imidazol-4-yl)propyl]-1-[5-[***N***-(5-bromopyrid-2-yl**)-*N*-(**3,4-dichlorobenzyl)amino]pentyl]thiourea (43).** A solution of **65** (1.02 g, 2.77 mmol) was dissolved in THF (20 mL) and treated dropwise with a solution of **36** (1.27 g, 2.77 mmol) in THF (40 mL) at 0–5 °C under a nitrogen atmosphere. The reaction was allowed to warm to room temperature and was stirred overnight. The mixture was treated with additional amine **65** (0.182 g, 0.495 mmol) and was refluxed for

24 h. Removal of the solvent afforded an oil which was purified by flash chromatography on silica gel using a solvent system of EtOAc/MeOH/Et₃N (92:4:4). Fractions homogeneous by TLC were combined and evaporated to yield 2.20 g of a foam. The trityl-protected thiourea was refluxed in 1 N HCl (50 mL) for 1.5 h, and the precipitated triphenylmethanol was removed by filtration. The filtrate was extracted with Et₂O (2×100 mL), and the Et₂O phase was washed with water (100 mL) and evaporated under reduced pressure. The residue was dissolved in EtOAc (300 mL), and the EtOAc phase was washed with water (2×50 mL), dried (Na₂SO₄), filtered, and evaporated. The resulting residue was flash chromatographed on silica gel using EtOAc/MeOH/concentrated NH₄OH (85:15: 1) as the solvent. Fractions homogeneous by TLC were combined and evaporated to yield 500 mg (31%) of 43 as a solid foam: ¹H NMR (CDCl₃) δ 1.15–2.00 (m, 8 H), 2.25 (m, 2 H), 3.45 (m, 6 H), 4.64 (s, 2 H, ArCH₂), 6.25-8.13 (m, 10 H); ¹³C NMR (CDCl₃) & 23.86, 24.43, 26.98, 29.04, 43.61, 44.64, 48.97, 50.98, 106.78, 107.48, 126.44, 128.88, 130.67, 134.35, 139.17, 139.93, 148.65, 156.51, 181.70. Anal. (C24H29BrCl2N6S) C, H, N.

3-[3-(Imidazol-1-yl)propyl]-1-[3-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]propyl]thiourea (44). A solution of 24 (1.00 g, 2.57 mmol) in THF (15 mL) was cooled to 0–5 °C under a nitrogen atmosphere and treated dropwise with 3-(imidazol-1-yl)propyl isothiocyanate (432 mg, 2.57 mmol) in THF (15 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight. Removal of the solvent under reduced pressure afforded a semisolid. Trituration with Et₂O/petroleum ether gave a solid which was recrystallized from EtOAc/Et₂O to yield 450 mg (31%) of **44**: mp 94–97 °C; ¹H NMR (CDCl₃) δ 1.60–2.35 (m, 4 H), 3.54 (m, 5 H), 4.05 (t, 2 H), 4.57 (s, 2 H, ArCH₂), 6.28 (d, J = 9 Hz, 1 H), 6.99 (d, J = 4.4 Hz, 1 H), 7.19 (m, 9 H); ¹³C NMR (CDCl₃) & 27.03, 30.91, 41.01, 41.50, 44.59, 51.03, 107.05, 107.64, 119.18, 125.90, 128.39, 129.21, 130.78, 131.21, 132.89, 136.95, 137.98, 140.04, 148.33, 156.62, 182.62. Anal. (C22H25-BrCl₂N₆S) C, H, N.

3-[3-(Imidazol-1-yl)propyl]-1-[3-[N-(4-bromobenzyl)-N-(pyrid-2-yl)amino]propyl]thiourea Dihydrobromide (45). A solution of 23 (616 mg, 1.92 mmol) in THF (15 mL) was treated dropwise with 3-(imidazol-1-yl)propyl isothiocyanate (323 mg, 1.92 mmol) in THF (10 mL) under a nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature, filtered, and evaporated under reduced pressure to afford a yellow oil. The oil was dissolved in MeOH and acidified with methanolic hydrogen bromide. Addition of Et₂O afforded a cloudy solution which produced a light-tan solid upon standing in the refrigerator. The solid was filtered and dried to yield 0.94 g (75%) of 45. Recrystallization from absolute EtOH/Et₂O afforded an analytical sample: mp 199-201 °C; ¹H NMR (DMSO-*d*₆) δ 1.55–2.25 (m, 4 H, CH₂), 3.20– 3.90 (m, 6 H, CH₂), 4.26 (t, 2 H), 7.00 (t, 1 H), 7.26 (d, J = 8.3 Hz, 2 H), 7.57 (d, J = 8.3 Hz, 2 H), 7.86 (m, 9 H); ¹³C NMR (CDCl₃) & 25.57, 29.09, 37.87, 39.98, 46.10, 47.40, 51.57, 111.76, 112.20, 121.78, 131.37, 134.73, 135.11, 137.44, 143.40, 151.27, 181.66. Anal. (C₂₂H₂₉Br₃N₆S) H, N; C: calcd, 40.69; found, 39.96.

3-[3-(Imidazol-1-yl)propyl]-1-[4-[N-(4-bromobenzyl)-N-(pyrid-2-yl)amino]butyl]thiourea (46). A solution of 26 (1.11 g, 3.34 mmol) in THF (30 mL) was treated dropwise with a solution of 3-(imidazol-1-yl)propyl isothiocyanate (559 mg, 3.34 mmol) in THF (10 mL). After stirring overnight at room temperature under nitrogen, the solvent was removed under reduced pressure to afford an oil. The oil was dissolved in absolute EtOH and acidified with ethanolic hydrogen chloride. Addition of Et₂O afforded a very hygroscopic solid. The solvents were removed under reduced pressure, and the residue was partitioned between 10% NaOH (100 mL) and CH₂Cl₂ (50 mL). The basic layer was extracted with CH₂Cl₂ $(2 \times 50 \text{ mL})$, and the combined organic extracts were washed with water (2 \times 50 mL), dried (Na₂SO₄), filtered, and evaporated. The resulting oil was triturated with Et₂O to yield 950 mg (57%) of a tan solid. Recrystallization from EtOAc/Et₂O afforded 691 mg (41%) of **46**: mp 122–124 °C; ¹H NMR (CDCl₃) δ 1.63 (m, 4 H), 2.07 (m, 2 H), 3.55 (m, 6 H), 4.01 (t, J = 7.4 Hz, 2 H), 4.66 (s, 2 H, ArCH₂), 6.36–8.18 (m, 13 H); ¹³C NMR (CDCl₃) δ 25.02, 26.16, 30.16, 41.28, 44.09, 44.16, 48.05, 51.19, 106.02, 112.14, 119.23, 120.64, 128.50, 129.09, 131.64, 136.95, 137.49, 147.84, 157.97, 182.89. Anal. (C₂₃H₂₉-BrN₆S) H, N; C: calcd, 54.48; found, 55.04.

3-[3-(Imidazol-1-yl)propyl]-1-[4-[N-(3,4-dichlorobenzyl)-**N-(pyrid-2-yl)amino]butyl]thiourea (47).** A solution of **27** (900 mg, 2.79 mmol) in THF (20 mL) was treated dropwise with 3-(imidazol-1-yl)propyl isothiocyanate (470 mg, 2.79 mmol) in THF (15 mL). After stirring overnight under nitrogen, the solvent was removed under reduced pressure. The resulting residue was flash chromatographed on silica gel using a solvent system of CH2Cl2/MeOH/concentrated NH4OH (100:10:1) to yield a yellow foam. The foam was triturated with MeOH/water to yield a white solid. Recrystallization from CH_2Cl_2/Et_2O afforded 659 mg (48%) of 47 as a white, crystalline solid: mp 112–113.5 °C; ¹H NMR (CDCl₃) δ 1.60 (m, 4 H), 2.08 (m, 2 Ĥ), 3.50 (m, 6 H), 4.00 (t, 2 H), 4.63 (s, 2 H, ArCH₂), 7.20 (m, 12 H); ¹³C NMR (CDCl₃) δ 24.97, 26.17, 30.61, 41.39, 44.10, 44.69, 48.22, 50.87, 106.02, 112.47, 126.23, 128.66, 129.21, 130.61, 137.71, 139.23, 147.95, 182.95. Anal. (C₂₃H₂₈Cl₂N₆S) C, H, N.

3-[3-(Imidazol-1-yl)propyl]-1-[4-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]butyl]thiourea (48). A solution of 28 (1.01 g, 2.48 mmol) in THF (20 mL) was treated dropwise with 3-(imidazol-1-yl)propyl isothiocyanate (431 mg, 2.48 mmol) in THF (15 mmol). After stirring overnight at room temperature under nitrogen, the solvent was removed under reduced pressure. The resulting residue was triturated with Et₂O/hexane to afford a solid. Recrystallization from CH₂Cl₂/ Et₂O gave 1.00 g (71%) of 48 as white crystals: mp 139-141 °C; ¹H NMR (CDCl₃) δ 1.61 (m, 4 H), 2.07 (m, 2 H), 3.50 (m, 6 H), 4.00 (t, 2 H), 4.62 (s, 2 H, ArCH₂), 6.30 (d, J = 9 Hz, 1 H, pyridine H-3), 7.15 (m, 9 H), 8.12 (d, 1 H, pyridine H-6); ¹³C ŇMR (CDCl₃) δ 24.70, 26.33, 30.44, 41.28, 43.87, 44.64, 48.43, 50.97, 106.77, 107.32, 119.23, 126.17, 128.61, 130.62, 130.99, 136.89, 138.74, 139.77, 148.54, 182.94. Anal. $(C_{23}H_{27}BrCl_2N_6S)$ C, H, N.

3-[3-(1H-Imidazol-4-yl)phenyl]-1-[4-[N-(5-bromopyrid-2-yl)-N-(3,4-dichlorobenzyl)amino]butyl]thiourea (49). A suspension of 4-(3-aminophenyl)-1H-imidazole dihydrochloride³⁴ (521 mg, 2.25 mmol) and Et₃N (455 mg, 4.49 mmol) in THF (30 mL) was stirred under nitrogen for 2 h, and the reaction mixture was treated dropwise with 35 (1.00 g, 2.25 mmol) in THF (15 mL). The reaction mixture was heated at 45 °C for 48 h and filtered, and the solvent was evaporated under reduced pressure. The residue was flash chromatographed on silica gel using CH₂Cl₂/MeOH/concentrated NH₄-OH (100:10:1) to give a solid. Recrystallization from Et₂O/ hexane afforded 300 mg (22%) of 49: mp 140-160 °C; ¹H NMR (CDCl₃) δ 1.49 (m, 4 H), 3.47 (m, 4 H), 4.51 (s, 2 H, ArCH₂), 6.22 (d, 1 H, pyridine H-3), 7.30 (m, 10 H), 8.00 (d, 1 H, pyridine H-6), 8.53 (br s, 1 H); 13 C NMR (CDCl₃) δ 24.43, 26.38, 44.85, 48.48, 50.92, 106.67, 107.32, 121.51, 123.41, 126.17, 126.61, 130.18, 130.56, 130.88, 132.56, 135.11, 135.97, 137.11, 138.79, 148.43, 156.18, 180.56. Anal. (C26H25BrCl2N6S) C, H, N.

N-1-(5-Bromopyrid-2-yl)-*N*-1-(3,4-dichlorobenzyl)-*N*-2-[4-(1*H*-imidazol-4-yl)piperid-1-yl]thioxomethyl]ethane-1,2-diamine (50). A suspension of 4-(piperidin-4-yl)-1*H*imidazole dihydrochloride³⁵ (387 mg, 1.73 mmol) and triethylamine (350 mg, 3.50 mmol) in THF (30 mL) was stirred for 2 h at room temperature under nitrogen and treated dropwise with **30** (662 mg, 1.73 mmol) in THF (15 mL). After the mixture had stirred overnight, considerable starting material remained. The reaction mixture was heated at 60 °C for 24 h, cooled to room temperature, filtered, and evaporated to yield an oil. Flash chromatography on silica gel using a solvent system of EtOAc/MeOH/concentrated NH₄OH (85:15:1) afforded 700 mg (71%) of **50** as a white foam: ¹H NMR (CDCl₃) δ 1.58 (m, 2 H), 2.03 (m, 2 H), 2.89 (m, 1 H), 3.09 (m, 2 H), 3.85 (t, 4 H), 4.62 (d, 4 H), 6.32–8.11 (m, 15 H); ¹³C NMR

3-[(1*H***-Benzimidazol-2-yl)methyl]-1-[2-[***N***-(5-bromopyrid-2-yl)-***N***-(3,4-dichlorobenzyl)amino]ethyl]thiourea (51). A mixture of 2-(aminomethyl)benzimidazole dihydrochloride hydrate (600 mg, 2.73 mmol), Et₃N (552 mg, 5.46 mmol), and 30** (1.14 g, 2.73 mmol) in THF (45 mL) was stirred overnight under nitrogen. The mixture was filtered, and the filtrate was evaporated under reduced pressure. Flash chromatography of the residue on silica gel using CH₂Cl₂/EtOH/NH₄OH (100: 5:0.5) afforded 1.00 g (66%) of a solid foam. Anal. (C₂₃H₂₁-BrCl₂N₆S) H, N; C: calcd, 48.94; found, 48.27.

3-(1H-Benzotriazol-5-yl)-1-[2-[N-(5-bromopyrid-2-yl)-N-(3,4-dichlorobenzyl)amino]ethyl]thiourea (52). A solution of 5-aminobenzotriazole (312 mg, 2.28 mmol) in THF (40 mL) was stirred under nitrogen and treated with a solution of 30 (950 mg, 2.28 mmol) in THF (25 mL). After the mixture stirred overnight, a TLC [silica gel, EtOAc/MeOH/concentrated NH₄OH (9:1:0.5)] of the reaction mixture indicated that only starting material was present. The mixture was refluxed for 48 h, cooled to room temperature, and evaporated under reduced pressure to afford a brown foam. Trituration of the foam with hexane afforded a solid which was recrystallized from EtOAc/hexane to give 1.08 g (86%) of 52: mp 189.5-191.5 °C; ¹H NMR (DMSO- d_6) δ 3.67 (m, 4 H), 4.78 (s, 2 H, ArCH₂), 6.78–8.06 (m, 11 H), 9.86 (s, 1 H, N=N-NH); ¹³C NMR (DMSO-*d*₆) δ 46.84, 50.01, 106.02, 108.08, 115.99, 122.92, 127.04,128.67, 129.21, 130.56, 131.00, 136.47, 139.94, 147.63, 156.24, 180.72. Anal. (C21H19BrCl2N7S) C, H, N.

3-[4-(Piperid-1-yl)phenyl]-1-[2-[*N***-(5-bromopyrid-2-yl)**-*N***-(3,4-dichlorobenzyl)amino]ethyl]thiourea (53).** A solution of *N*-(4-aminophenyl)piperidine (388 mg, 2.16 mmol) in THF (40 mL) was stirred under nitrogen and treated dropwise with **30** (0.90 g, 2.16 mmol) in THF (15 mL). The reaction mixture was stirred at 40 °C for an additional 24 h. Evaporation of the solvent afforded a dark-brown oil. Trituration with hexane gave a solid which was recrystallized from Et₂O/hexame to yield 930 mg (73%) of a light-brown solid: mp 146–147.5 °C; ¹H NMR (CDCl₃) δ 1.66 (m, 6 H), 3.21 (m, 4 H), 3.80 (br s, 4 H), 4.85 (s, 2 H, ArCH₂), 6.32 (d, 1 H, pyridine H-3), 7.30 (m, 11 H, ArH and N*H*C=SN*H*); ¹³C NMR (CDCl₃) δ 24.16, 25.67, 45.07, 47.07, 49.84, 51.30, 107.59, 116.52, 125.73, 127.36, 128.23, 130.83, 137.60, 140.04, 148.11, 151.36, 156.56, 181.37. Anal. (C₂₆H₂₈BrClN₅S) C, H, N.

3-[4-(Piperidin-1-yl)phenyl]-1-[3-[*N***-(5-bromopyrid-2-yl)-***N***-(3,4-dichlorobenzyl)amino]propyl]thiourea (54). A solution of** *N***-(4-aminophenyl)piperidine (0.78 g, 4.40 mmol) in THF (50 mL) was stirred under nitrogen and treated dropwise with 33** (1.90 g, 4.40 mmol) in THF (20 mL). After stirring overnight at room temperature, the solvent was removed under reduced pressure to afford an oil. Trituration of the oil with EtOAc/hexane gave a dark-brown solid which was recrystallized from EtOAc/hexane to give 1.74 g (65%) of **54**. An analytical sample was obtained by a second recrystallization from EtOAc/hexane to give a tan solid: mp 125–127 °C; ¹H NMR (CDCl₃) δ 1.69 (m, 8 H), 3.22 (m, 4 H), 3.63 (m, 4 H), 4.49 (s, 2 H, ArCH₂), 6.15 (d, J = 9 Hz, 1 H, pyridine H-3), 6.90–7.56 (m, 11 H). Anal. (C₂₇H₃₀BrCl₂N₅S) C, H, N.

3-[2-(Pyrid-2-yl)ethyl]-1-[3-[*N***-(5-bromopyrid-2-yl)***-N***-(3,4-dichlorobenzyl)amino]propyl]thiourea (55).** A solution of 2-(2-aminoethyl)pyridine (0.33 g, 2.71) in THF (50 mL) was cooled to 0-5 °C under a nitrogen atmosphere and treated with a solution of **33** (1.17 g, 2.71 mmol) in THF (25 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight. Removal of the solvent under reduced pressure afforded an oil which was purified by flash chromatography on silica gel using EtOAc/MeOH/concentrated NH₄OH (96:4:1) as the solvent system. Fractions homogeneous by TLC were combined and evaporated to yield 1.11 g (74%) of a foam: ¹H NMR (CDCl₃) δ 1.78 (m, 2 H), 3.00 (t, 2 H), 3.69 (m, 6 H), 4.59 (s, 2 H, ArCH₂), 6.30 (d, *J* = 9 Hz, 1 H, pyridine H-3), 6.88–8.49 (m, 11 H); ¹³C NMR (CDCl₃) δ 26.82, 36.30, 41.34, 43.34, 45.89, 50.93, 107.05, 107.59, 121.84,

123.63, 125.91, 128.40, 130.67, 131.11, 132.79, 136.96, 137.99, 139.99, 148.50, 148.93, 156.57, 159.06, 181.11. Anal. (C $_{23}H_{24}\text{-}BrCl_2N_5S)$ C, H, N.

3-[3-[N-(Pyrid-2-yl)amino]propyl]-1-[3-[N-(4-bromobenzyl)-N-(pyrid-2-yl)amino]propyl]thiourea (56). A solution of 16 (419 mg, 2.76 mmol) in THF (25 mL) was cooled to 0-5 °C under a nitrogen atmosphere and treated dropwise with 32 (1.00 g, 2.76 mmol) in THF (25 mL). After stirring overnight at room temperature, the solvent was removed under reduced pressure to afford an oil. The oil was flash chromatographed on silica gel using a solvent system of CH₂Cl₂/MeOH/ Et₃N (90:5:5) to yield 9 50-mL fractions. Fractions 3–9 were combined and evaporated under reduced pressure to give 1.31 g (92%) of 56 as an oil: ¹H NMR (CDCl₃) δ 1.82–2.40 (m, 7 H), 3.58 (m, 5 H), 4.57 (s, 2 H, ArCH₂), 4.75 (br m, NH), 6.35-8.14 (m, 14 H); ¹³C NMR (CDCl₃) δ 27.14, 29.53, 38.63, 41.17, 45.34, 51.30, 106.40, 108.29, 112.52, 112.85, 120.86, 128.18, 131.81, 136.68, 137.39, 137.77, 147.63, 158.73, 181.05; MS (CI, CH₄) m/z 513 (M⁺). Anal. (C₂₄H₂₉BrN₆S) C, H, N.

3-[3-[N-(Pyrid-2-yl)amino]propyl]-1-[3-[N-(3,4-dichlorobenzyl)-N-(5-bromopyrid-2-yl)amino]propyl]thiourea (57). A solution of 24 (352 mg, 2.32 mmol) in THF (30 mL) was cooled to 0–5 $^\circ\mathrm{C}$ under nitrogen and treated dropwise with 33 (1.00 g, 2.32 mmol) in THF (20 mL). After stirring overnight at room temperature, the solvent was removed under reduced pressure to afford an oil. Flash chromatography on silica gel using a solvent system of CH₂Cl₂/MeOH/Et₃N (98: 1:1) gave an oil which solidified upon trituration with hexane. Recrystallization from EtOAc/hexane gave a hygroscopic solid: mp 88 °C; ¹H NMR (CDCl₃) δ 0.90–2.10 (m, 4 H), 3.50 (m, 8 H), 4.57 (s, 2 H, ArCH₂), 4.90 (br s, 1 H, NH), 6.30 (d, J = 9.3 Hz, 1 H, pyridine H-3), 6.45–8.18 (m, 11 H); ¹³C NMR (CDCl₃) δ 27.09, 29.64, 38.63, 41.34, 41.45, 46.05, 51.14, 107.16, 107.65, 108.57, 112.90, 125.99, 128.51, 130.78, 131.21, 132.89, 137.55, 138.15, 140.10, 147.30, 148.50, 156.62, 158.79, 181.43; MS (CI, CH₄) *m*/*z* 583 (M⁺). Anal. (C₂₄H₂₇BrCl₂N₆S) C, H, N.

3-(3-Phenylpropyl)-1-[4-[*N***-(4-bromobenzyl)**-*N***-(pyrid-2-yl)amino]butyl]thiourea (58).** A solution of **26** (1.00 g, 2.99 mmol) in THF (25 mL) was treated dropwise with 3-phenylpropyl isothiocyanate (530 mg, 2.99 mmol) in THF (10 mL). After stirring overnight under nitrogen at room temperature, the solvent was evaporated under reduced pressure to afford an oil. Flash chromatography using a mobile phase of CH₂Cl₂/MeOH/Et₃N (95:2.5:2.5) afforded 817 mg (55%) of **58** as a light-yellow oil. Upon standing, a tan solid formed: mp 105–108 °C; ¹H NMR (CDCl₃) δ 1.72 (m, 6 H), 2.67 (m, 2 H), 3.50 (m, 6 H), 4.63 (s, 2 H, ArCH₂), 7.22 (m, 15 H); ¹³C NMR (CDCl₃) δ 25.03, 25.78, 30.50, 33.21, 43.88, 44.15, 47.94, 51.35, 106.07, 112.25, 120.70, 126.17, 128.34, 128.44, 131.64, 137.55, 141.07, 147.84, 158.02, 181.75. Anal. (C₂₆H₃₁-BrN₄S) C, H, N.

3-(3-Aminopropyl)-1-[3-[N-(5-bromopyrid-2-yl)-N-(3,4dichlorobenzyl)amino]ethyl]thiourea (59). A suspension of N-(3-aminopropyl)phthalimide hydrochloride³⁶ (1.11 g, 4.6 mmol) and Et_3N (1.2 g, 12 mmol) in THF (50 mL) was stirred under nitrogen for 3 h. The reaction mixture was treated dropwise with the isothiocyanate 30 (1.92 g, 4.6 mmol), stirred overnight at room temperature, filtered, and evaporated under reduced pressure. The resulting mixture was purified by flash chromatography on silica gel using EtOAc/hexane/Et₃N (60: 40:1) to yield 2.44 g (85%) of the phthalimide. A portion of this compound (1.92 g, 3.09 mmol) and hydrazine hydrate (1.24 g, 25.4 mmol) in absolute EtOH (100 mL) were refluxed for 8 h, cooled, and filtered. The residue was dissolved in EtOAc (60 mL) and washed with water (10 mL). The organic layer was dried (Na₂SO₄), filtered, and evaporated. The resulting oil was purified by flash chromatography on silica gel using EtOAc/MeOH/concentrated NH4OH (50:50:1) to yield 1.06 g (70%) of a solid foam: ¹H NMR (CDCl₃) δ 1.85 (m, 6 H), 2.17 (s, 2 H, NH₂), 3.50 (m, 6 H), 4.65 (s, 2 H, ArCH₂), 7.03 (d, J= 6 Hz, 1 H), 7.33 (m, 6 H), 8.15 (d, J = 2.2 Hz, 1 H, pyridine H-6). Anal. (C18H22BrCl2N5S) C, H, N.

3-[3-(Dimethylamino)propyl]-1-[2-[*N*-(5-bromopyrid-2-yl)-*N*-(3,4-dichlorobenzyl)amino]ethyl]thiourea (60). A

solution of **21** (1.00 g, 2.67 mmol) in THF (25 mL) was cooled to 0–5 °C under a nitrogen atmosphere and treated dropwise with a solution of 3-(dimethylamino)propyl isothiocyanate (385 mg, 2.67 mmol) in THF (15 mL). After stirring overnight at room temperature, the solvent was removed under reduced pressure to afford an oil. Flash chromatography on silica gel using a solvent system of EtOAc/MeOH/concentrated NH₄OH (85:15:1) gave 900 mg (65%) of **60** as a white foam: ¹H NMR (CDCl₃) δ 1.70 (m, 2 H), 1.95–2.45 (m, including s at 2.23 N(CH₃)₂, 8 H), 2.50–3.95 (m, 6 H), 4.68 (s, 2 H, ArCH₂), 6.47 (d, *J* = 9 Hz, 1 H), 7.20 (m, 6 H), 7.55 (d, *J* = 2.2 Hz, 1 H), 8.18 (d, *J* = 2.5 Hz, 1 H); ¹³C NMR (CDCl₃) δ 26.32, 43.11, 44.85, 47.67, 51.52, 57.28, 107.97, 126.06, 128.55, 130.77, 131.26, 132.89, 138.09, 140.15, 148.33, 156.72, 182.46. Anal. (C₂₀H₂₆BrClN₅S) C, H, N.

3-[3-(Pyrrolidin-1-yl)propyl]-1-[2-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]ethyl]thiourea (61). A solution of N-(3-aminopropyl)pyrrolidine (354 mg, 2.76 mmol) in THF (50 mL) was cooled to 0-5 °C in an ice-water bath under a nitrogen atmosphere and treated with 30 (1.19 g, 2.76 mmol) in THF (25 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight. Removal of the solvent under reduced pressure afforded an oil which solidified upon trituration with hexane/EtOAc. Recrystallization from EtOAc/hexane afforded 1.03 g (66%) of 61 as a white solid: mp 123–125 °C; ¹H NMR (CDCl₃) δ 1.77 (m, 6 H), 2.45 (m, 6 H), 3.50 (m, 6 H), 4.68 (s, 2 H, ArH), 6.50 (d, 1 H), 7.00–7.55 (m, 6 H), 8.16 (d, J = 2.2 Hz, 1 H); ¹³C NMR $(CDCl_3)$ δ 23.62, 28.17, 43.07, 47.89, 51.74, 107.59, 108.08, 126.33, 128.83, 130.94, 138.47, 140.26, 148.55, 156.84, 183.0. Anal. (C₂₂H₂₈BrCl₂N₅S) C, H, N.

3-[3-(Pyrrolidin-1-yl)propyl]-1-[3-[N-(5-bromopyrid-2yl)-N-(3,4-dichlorobenzyl)amino]propyl]thiourea (62). A solution of N-(3-aminopropyl)pyrrolidine (354 mg, 2.76 mmol) in THF (50 mL) was cooled to 0-5 °C under a nitrogen atmosphere and treated dropwise with a solution of 33 (1.19 g, 2.76 mmol) in THF (25 mL). The reaction mixture was allowed to warm to room temperature and was stirred overnight. The solvent was removed under reduced pressure to afford an oil which solidified upon trituration with EtOAc/ hexane. Recrystallization from EtOAc/hexane gave 1.03 g (66%) of **62** as a white solid: mp 122–124 °C; ¹H NMR (CDCl₃) δ 1.73 (m, 8 H), 2.57 (m, 6 H), 3.60 (m, 6 H), 4.63 (s, 2 H, ArCH₂), 6.33 (d, J = 9 Hz, 1 H, pyridine H-3), 7.00–7.53 (m, 6 H), 8.18 (d, *J* = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) δ 23.46, 27.14, 41.99, 46.16, 51.09, 53.36, 53.69, 107.05, 107.48, 126.12, 128.61, 130.72, 132.72, 132.84, 138.31, 139.99, 148.55, 156.51, 182.13. Anal. (C₂₃H₃₀BrCl₂N₅S) C, H, N.

3-(4-Aminobutyl)-1-[3-[N-(5-bromopyrid-2-yl)-N-(3,4dichlorobenzyl)amino]propyl]thiourea (63). A suspension of N-(4-aminobutyl)phthalimide hydrochloride³⁷ (1.50 g, 5.89 mmol) and Et₃N (1.49 g, 14.7 mmol) was stirred under nitrogen for 3 h at room temperature, and a solution of 33 (2.54 g, 5.89 mmol) in THF (50 mL) was added dropwise. After stirring overnight, the precipitate was filtered, and the filtrate was evaporated under reduced pressure to yield an oil. Flash chromatography on silica gel using CH2Cl2/MeOH/concentrated NH₄OH (100:1:1.5) as the solvent afforded 2.06 g of the intermediate phthalimide as an oil. The oil was dissolved in a mixture of 85% hydrazine hydrate (635 mg, 12.7 mmol) and absolute EtOH (75 mL) and refluxed for 8 h. The reaction mixture was cooled, filtered, and evaporated to yield an oil. Absolute EtOH (25 mL) was added, and the solution was concentrated under reduced pressure. The resulting residue was partitioned between Et₂O (200 mL) and water (50 mL), and the Et₂O phase was separated, dried (Na₂SO₄), filtered, and evaporated under reduced pressure. Flash chromatography on silica gel using EtOAc/MeOH/concentrated NH4OH (50: 50:1.2) afforded 1.15 g (70%) of 63 as a colorless oil: ¹H NMR (CDCl₃) δ 1.66 (m, 6 H), 2.80 (t, 2 H), 3.59 (m, 6 H), 4.62 (s, 2 H, ArCH₂), 6.35 (d, J = 9 Hz, 1 H, pyridine H-3), 6.99-7.56 (m, 6 H), 8.18 (d, J = 2.4 Hz, 1 H, pyridine H-6); ¹³C NMR (CDCl₃) & 26.33, 27.09, 30.28, 41.44, 41.61, 43.83, 50.98, 107.75, 3-(4-Aminobutyl)-1-[3-[N-(5-bromopyrid-2-yl)-N-(naphth-1-ylmethyl)amino]propyl]thiourea (64). A solution of *N*-(4-aminobutyl)phthalimide hydrochloride (688 mg, 2.7 mmol) and Et₃N (547 mg, 5.4 mmol) in THF (25 mL) was stirred for 2 h at room temperature. The reaction mixture was treated dropwise with a solution of 34 (1.11 g, 2.7 mmol) in THF (20 mL), and the mixture was stirred overnight under nitrogen. The precipitated Et₃N·HCl was filtered, and the filtrate was evaporated under reduced pressure to afford an oil. Purification by flash chromatography on silica gel using a solvent system of CH₂Cl₂/MeOH/concentrated NH₄OH (100:2:1) gave 1.08 g of a yellow foam. The foam was suspended in a mixture of EtOH (20 mL) and 85% hydrazine hydrate (641 mg, 12.7 mmol), and the mixture was refluxed for 5 h. The mixture was filtered to remove the precipitated phthalhydrazide, and the solvent was removed under reduced pressure to yield an oily residue. The oil was dissolved in CH₂Cl₂ (75 mL), washed with water (3 \times 50 mL), separated, dried (Na₂SO₄), filtered, and evaporated to yield 700 mg of the amine as a light-yellow foam. Flash chromatography on silica gel using EtOAc/MeOH/ concentrated NH₄OH (50:50:1) as the solvent yielded 650 mg (48%) of **64** as a white foam: ¹H NMR (CDCl₃) δ 1.70 (m, 10 H), 2.79 (m, 2 H), 3.70 (m, 6 H), 5.06 (s, 2 H, ArCH₂), 6.29 (d, J = 9 Hz, 1 H), 6.70-8.20 (m, 11 H); ¹³C NMR (CDCl₃) δ 26.32, 27.18, 30.27, 41.43, 41.59, 43.71, 45.39, 49.83, 106.66, 108.34, 122.37, 123.07, 125.45, 126.00, 126.43, 127.95, 129.03, 130.82, 131.03, 133.86, 140.08, 147.99, 157.47, 181.03. Anal. (C₂₄H₃₀-BrN₅S) H; C: calcd, 57.59; found, 56.80. N: calcd, 14.00; found. 13.58.

3-[3-(1H-Imidazol-4-yl)propyl]-1-[2-[N-(5-bromopyrid-2-yl)-N-(3,4-dichlorobenzyl)amino]ethyl]urea (66). The amine 21 (1.5 g, 4.0 mmol) in THF (50 mL) was cooled to 0 °C in an ice bath. Triphosgene (392 mg, 1.3 mmol) was added in one portion and stirred for 5 min. A solution of Et₃N (1.22 g, 12.0 mmol) in THF (5 mL) was added dropwise, and a white precipitate formed upon stirring. The mixture was allowed to warm to 17 °C over 15 min and cooled to 0 °C. The reaction mixture was treated dropwise with a suspension of 65 (915 mg, 2.8 mmol) in THF (20 mL) over 5 min. After stirring overnight at room temperature under a nitrogen atmosphere, the solvent was removed under reduced pressure to yield a yellow foam. The intermediate trityl-protected urea was suspended in 1 N HCl (35 mL) and refluxed for 1.5 h. The solution was filtered, extracted with Et₂O (2 \times 200 mL), basified with 6 N NaOH, and extracted with EtOAc (3 \times 100 mL). The combined EtOAc extracts were washed with water (3 \times 100 mL), dried (Na₂SO₄), and evaporated under vacuum to yield a foam. Flash chromatography on silica gel using a solvent system of CH₂Cl₂/MeOH/concentrated NH₄OH (90:10: 1) yielded 300 mg of 66 as a yellow foam which was recrystallized from CHCl₃/hexane to afford 200 mg (10%) of an analytical sample: mp 143–146 °C; ¹H NMR δ 1.60 (m, 2 H), 2.50 (m, 2 H), 3.15 (m, 4 H), 3.49 (d, 2 H), 4.75 (s, 2 H, ArCH₂), 6.04–7.78 (m, 10 H), 8.12 (d, *J* = 2.4 Hz, 1 H, pyridine H-6); ¹C NMR (CDCl₃) δ 23.84, 30.12, 38.19, 39.93, 48.60, 50.27, 106.07, 108.19, 116.90, 127.25, 128.94, 129.50, 130.72, 131.16, 134.90, 136.00, 139.77, 140.37, 147.90, 156.51, 158.41. Anal. (C21H23BrCl2N6O) C, H, N.

Biological Assay. Cell Lines Expressing sst Receptor Subtypes. BHK cells (tk-ts13, ATCC CRL# 1573) were grown to 20–40% confluency in a tissue dish in DMEM containing 1% penicillin/streptomycin, 10% fetal bovine serum, and 1% Glutamax. Prior to transfection, the cells were washed twice with calcium-free PBS after which 20 mL of serum-free DMEM was added to the cells.

Transfection was carried out as described previously (product description: Lipofectamin, Gibco BRL catalog no. 18324-012). Briefly, 10 μ g of cDNA encoding an sst receptor subtype inserted into the mammalian vector pcDNA3 (Invitrogen) was diluted with 300 μ L of sterile water. Lipofectamin (30 μ g) was diluted in 300 μ L of sterile water, and the cDNA and lipofectamin/cDNA mixture was added dropwise to the cells (HEK 293 cells for sst₂ and BHK cells for sst₄) while the plates were gently swirled. The cells were then incubated for 16–24 h, after which the medium was replaced with standard medium containing 1 mg/mL Geneticin (G-418 sulfate). Resistant colonies appearing after 1–2 weeks were isolated and propagated for further characterization.

Binding Assay. Cells expressing individual sst receptor subtypes were resuspended in buffer [50 mM Tris-HCl (pH 7.4), 1 mM EGTA, 5 mM MgCl₂] and homogenized. Membranes were washed twice in buffer by homogenization and centrifugation. Final membrane pellets were resuspended at a protein concentration of 125 μ g/mL in buffer. Binding assays using 75 pM [¹²⁵I]Tyr-SRIF (Amersham, IM-161) were done in duplicates in minisorb polypropylene tubes in a volume of 250 μ L. The assays were incubated at 30–37 °C for 30–90 min depending on the receptor subtype. Binding was terminated by filtration through Whatman GF/B glass fiber filters presoaked for 4 h in 0.5% poly(ethylenimine) and 0.1% BSA. Filters were washed three times with 5 mL of ice-cold 0.9% saline and counted in a Packard Cobra II gamma counter.

Functional Assay. Baby hamster kidney (BHK) cells expressing the human sst₄ receptor were seeded in 24-well tissue culture multidishes at 200 000 cells/well and grown for 16–20 h. The medium was removed, and fresh DMEM medium, supplemented with (1) 3-isobutyl-1-methylxanthine (IBMX), (2) forskolin (5 μ M) or medium, and (3) medium, SRIF, or compound, was added. The plates were incubated for 15–30 min at 37 °C, the reaction medium was removed, and the cells were lysed with 0.1 M NaOH. Following neutralization with 0.1 M HCl, an aliquot was removed for cAMP determination using Amersham SPA RIA (RPA 538).

Acknowledgment. The financial support of Novo Nordisk A/S is greatly appreciated.

References

- McCann, S. M. The Discovery of Growth Hormone (GH)-Releasing Hormone and GH Release-Inhibiting Hormone. *Endocrinology* 1992, 131, 2042–2043.
- (2) Reisine, T. Somatostatin receptors. Am. J. Physiol. (Gastrointest. Liver Physiol.) 1995, 269, G813–820.
- (3) Keri, G.; Mezo, I.; Vadasz, Z.; Horvath, A.; Idei, M.; Vantus, T.; Balogh, A.; Bokonyi, G.; Bajor, T.; Teplan, I.; Tamas, J.; Mak, M.; Horvath, J.; Csuka, O. Structure–Activity Relationship Studies of Novel Somatostatin Analogues with Antitumor Activity. *Pept. Res.* **1993**, *6*, 281–288.
- (4) Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic Polypeptide that Inhibits the Secretion of Immunoreactive Pituitary Growth Hormone. *Science* **1973**, *179*, 77–79.
- (5) Reubi, J. C. Evidence for two somatostatin-14 receptor types in rat brain cortex. *Neurosci. Lett.* 1984, 49, 259–263.
- (6) Bruno, J. F.; Berelowitz, M. Somatostatin Receptors: Orphan that Found Family and Function. *Mol. Cell Neurosci.* 1993, 4, 307–309.
- (7) Hoyer, D.; Bell, G. I.; Berelowitz, M.; Epelbaum, J.; Feniuk, W.; Humphrey, P. P. A.; O'Carroll, A. M.; Patel, Y. C.; Schonbrunn, A.; Taylor, J. E.; Reisine, T. Classification and nomenclature of somatostatin receptors. *Trends Pharmacol. Sci.* **1995**, *16*, 86– 88.
- (8) Thoss, V. S.; Piwko, C.; Hoyer, D. Somatostatin receptors in the Rhesus monkey brain: Localization and pharmacological characterization. *Naunyn-Schmiedberg's Arch. Pharmacol.* 1996, 353, 648–660.
- (9) Shoeffter, P.; Perez, J.; Langenegger, D.; Schupbach, E.; Bobirnac, I.; Lubbert, H.; Bruns, C.; Hoyer, D. Characterization and distribution of somatostatin SS-1 and SRIF-1 binding sites in rat brain: identity with SSTR-2 receptors. *Eur. J. Pharmacol.* 1995, 289, 163–173.
- (10) Hover, D.; Perez, J.; Schoeffter, P.; Langenegger, D.; Schapbach, E.; Kaupmann, K.; Lubbert, H.; Bruns, C.; Reubi, J. C. Pharmacological identity between somatostatin SS-2 binding sites and SSTR-1 receptors. *Eur. J. Pharmacol.* **1995**, *289*, 151–161.
- (11) Piwko, C.; Thoss, V. S.; Probst, A.; Hoyer, D. Localization and Pharmacological Characterization of Somatostatin Recognition Sites in Human Cerebellum. *Neuropharmacology* **1996**, *35*, 713– 723.
- (12) Vale, W.; Rivier, J.; Ling, N.; Brown, M. Biologic and Immunologic Activities and Applications of Somatostatin Analogues. *Metabolism* **1978**, *27*, 1392–1401.

- (13) Rivier, J.; Rivier, C.; Koerber, S. C.; Kornreich, W. D.; deMiranda, A.; Miller, C.; Galyean, R.; Porter, J.; Yamamoto, G.; Donaldson, C. J.; Vale, W. Structure activity relationships (SAR) of somatostatin, gonadotropin, corticotropin, and growth hormone releasing factors. In *Peptides: Chemistry and Biology, Proceedings of the Twelfth American Peptide Symposium*, Smith, J. A., Rivier, J. E., Eds.; ESCOM: Leiden, 1992; pp 33–36.
 (14) Veber, D. F.; Saperstein, R.; Nutt, R. F.; Freidinger, R. M.; Brady,
- (14) Veber, D. F.; Saperstein, R.; Nutt, R. F.; Freidinger, R. M.; Brady, S. F.; Curley, P.; Perlow, D. S.; Paleveda, W. J.; Colton, C. D.; Zacchei, A. G.; Tocco, D. J.; Hoff, D. R.; Vandlen, R.; Gerich, J. E.; Hall, L.; Mandarino, L.; Cordes, E. H.; Anderson, P. S.; Hirschmann, R. A Super Active Hexapeptide Analogue of Somatostatin. *Life Sci.* **1984**, *34*, 1371–1378.
- (15) Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.; Marbach, P.; Petcher, T. J.; Pless, J. SMS 201-995: A Very Potent and Selective Octapeptide Analogue of Somatostatin with Prolonged Action. *Life Sci.* **1982**, *31*, 1133–1140.
- (16) Lamberts, S. W. J.; van der Lely, A.-J.; de Herder, W. W.; Hofland, L. J. Octreotide. N. Engl. J. Med. 1996, 334, 246–254.
- (17) Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Identification and Characterization of Novel Somatostatin Antagonists. *Mol. Pharmacol.* **1996**, *50*, 709–715.
- (18) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino, J.; Leahy, E. M.; Sprengeler, P. A.; Furst, G.; Smith, A. B.; Strader, C. D.; Cascieri, M. A.; Candelore, M. R.; Donaldson, C.; Vale, W.; Maechler, L. Nonpeptidal Peptidomimetics with a β-D-Glucose Scaffolding. A Partial Somatostatin Agonist Bearing a Close Structural Relationship to a Potent, Selective Substance P Antagonist. J. Am. Chem. Soc. **1992**, *114*, 9217–9218.
 (19) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy, E. M.;
- (19) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy, E. M.; Salvino, J.; Arison, B.; Cichy, M. A.; Spoors, P. G.; Shakespeare, W. C.; Sprengeler, P. A.; Hamley, P.; Smith, A. B.; Reisine, T.; Raynor, K.; Maechler, L.; Donaldson, C.; Vale, W.; Freidinger, R. M.; Cascieri, M. R.; Strader, C. D. De Novo Design and Synthesis of Somatostatin Non-Peptide Peptidomimetics Utilizing β-D-Glucose as a Novel Scaffolding. J. Am. Chem. Soc. 1993, 115, 12550–12568.
- (20) Papageorgiou, C.; Haltimer, R.; Bruns, C.; Petcher, T. J. Design, Synthesis, and Binding Affinity of a Nonpeptide Mimic of Somatostatin. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 135–140.
- (21) Damour, D.; Barreau, M.; Blanchard, J. C.; Burgevin, M. C.; Doble, A.; Herman, F.; Pantel, G.; James-Surcour, E.; Vuilhorgne, M.; Mignani, S. Design, Synthesis and Binding Affinities of Novel Non-Peptide Mimics of Somatostatin/Sandostatin. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1667–1672.
- (22) Papageogiou, C.; Borer, X. A non-peptide for the somatostatin receptor having a benzodiazepinone structure. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 267–272.
- (23) Moore, G. J. Designing peptide mimetics. *Trends Pharmacol. Sci.* 1994, 15, 124–129.
- (24) Ankersen, M.; Crider, M.; Liu, S.; Ho, B.; Andersen, H. S.; Stidsen, C. Discovery of a Novel Nonpeptide Somatostatin Agonist with SST₄ Selectivity. J. Am. Chem. Soc. **1998**, 120, 1368–1373.
- (25) Mori, M.; Aihara, M.; Shimizu, T. Differential expression of somatostatin receptors in the rat eye: SSTR₄ is intensely expressed in the iris/ciliary body. *Neurosci. Lett.* **1997**, *223*, 185– 188.
- (26) Xia, S. L.; Fain, G.; Farahbakhsh, N. A. Synergistic Rise in Ca²⁺ Produced by Somatostatin and Acetylcholine in Ciliary Body Epithelial Cells. *Exp. Eye Res.* **1997**, *64*, 627–635.
- (27) Bell, F. W.; Cantrell, A. S.; Hogberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordan, S. L.; Kinnick, M. D.; Lind, P.; Morin, J. M.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X. X. Phenethylthiazole (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogues. *J. Med. Chem.* **1995**, *38*, 4929– 4936.
- (28) Jochims, J. C.; Seeliger, A. Eine neue Synthese aliphatischer Isothiocyanate. Angew. Chem. 1967, 79, 151.
- (29) Castro, J. L.; Ball, R. G.; Broughton, H. B.; Russell, M. G. N.; Rathbone, D.; Watt, A. P.; Baker, R.; Chapman, K. L.; Fletcher, A. E.; Patel, S.; Smith, A. J.; Marshall, G. R.; Reyecroft, W.; Matassa, G. V. Controlled Modification of Acidity in Cholecystokinin B Receptor Antagonists: N-(1,4-Benzodiazepin-3-yl)-N-[3-tetrazol-5-ylamino)phenyl]ureas. J. Med. Chem. 1996, 39, 842-849.
- (30) Veber, D. F. Design and discovery in the development of peptide analogues. In *Peptides: Chemistry and Biology, Proceedings of the Twelfth American Peptide Symposium*; Smith, J. A., Rivier, J. E., Eds.; ESCOM: Leiden, 1992; pp 3–14.

- (31) Ife, R. J.; Catchpole, K. W.; Durant, G. J.; Ganellin, C. R.; Harvey, C. A.; Meeson, M. L.; Owen, D. A. A.; Parsons, M. E.; Slingsby, B. P.; Theobald, C. J. Nonbasic histamine H₁antagonists. I. Synthesis and biological evaluation of some some substituted 2-(2-pyridylaminoalkylamino)pyrimidones and re-lated compounds. *Eur. J. Med. Chem.* **1989**, *24*, 249–258.
- (32) Ife, R. J. Pyridine Derivatives. Eur. Patent 0 113 572 AZ, 1983.
- (33) Buu-Hoi, N. P.; Lecucq, J. Side-chain Bromination of Some Alkylnaphthalenes with *N*-Bromosuccinimide. J. Chem. Soc. **1946**, 830-832.
- (34) Grant, R. L.; Pyman, F. L. The Nitro- and Amino-derivatives of 4-Phenylglyoxaline. J. Chem. Soc. 1921, 119, 1893-1903.

Journal of Medicinal Chemistry, 1998, Vol. 41, No. 24 4705

- (35) Ganellin, C. R.; Hosseini, K.; Khalaf, Y. S.; Tertiuk, W.; Arrang, J. M.; Garbarg, M.; Ligneau, X.; Schwartz, J. C. Design of Potent Non-Thiourea H₃–Receptor Antagonists. *J. Med. Chem.* **1995**, *38*, 3342–3350.
- 38, 3342–3350.
 (36) Iwata, M.; Kuzuhara, H. N-Substituted phthalimides, their preparation, and their use for the synthesis of polyamines. Japanese Patent 63 63,659; *Chem. Abstr.* 1989, *110*, 114673s.
 (37) Lakanen, J. R.; Coward, J. K.; Pegg, A. E. α-Methyl Polyamines: Metabolically Stable Spermidine and Spermine Mimics Capable of Supporting Growth in Cells Depleted of Polyamines. *J. Med. Chem.* 1995, *35*, 724–734.

JM980118E